Topic 5-Exact Equations

Tupic 5 - First order exact equations Suppose you have a first order equation of the form: $M(x,y) + N(x,y) \cdot y' = 0$ expressions with x and y $Z \times Y + (X^{2} - I) Y' =$ M(x,y) N(x,y)

also that there Suppose a function f(x,y) exists where $\frac{\partial f}{\partial x} = M(x,y)$ and $\frac{\partial f}{\partial y} = N(x,y)$ $E_{X:} \quad \sum_{X \neq y} + (x^2 - 1) y = 0$ $M(x, y) \quad M(x, y)$ $f(x,y) = x^2y - y$ Let Then, $\frac{\partial f}{\partial x} = 2xy + 0 = 2xy = M(x,y)$ $\frac{\partial f}{\partial y} = \chi^2 - I = N(\chi, y)$

Suppose $\frac{\partial f}{\partial x} = M(x,y)$, $\frac{\partial f}{\partial y} = N(x,y)$. Then, $M(x,y) + N(x,y) \cdot y' = 0$ becomes $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial x} = 0$ Math 2130 f(x,y) is a function of x and y y = y(x) is a function of xchain rule: $\frac{df}{dx} = \frac{\partial f}{\partial x} \cdot \frac{d}{dx}(x) + \frac{\partial f}{\partial y} \cdot \frac{d}{dx}(y)$ $= \frac{\partial f}{\partial x}(1) + \frac{\partial f}{\partial y} \frac{dy}{dx}$ $= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$

Hence,
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = 0$$

becomes $\frac{df}{dx} = 0$
So, for example the family of
curves given by $f(x,y)=c$
where c is a constant will
satisfy $\frac{df}{dx} = 0$.

Summary: If
$$\frac{\partial f}{\partial x} = M(x,y)$$
 and
 $\frac{\partial f}{\partial y} = N(x,y)$, then the equation
 $f(x,y) = c$ where c is any
 $constant$ will give an implicit
solution to
 $M(x,y) + N(x,y) \cdot y' = 0$

If such an f exists then We say that $M(x,y) + N(x,y) \cdot y' = 0$ is an exact equation

EX: Consider $2xy + (x^{2}-1)y' = 0$ M(x,y) N(x,y) Let $f(x,y) = x^{z}y - y$ We have $\frac{\partial f}{\partial x} = Z \times y = M(x,y)$ $\frac{\partial f}{\partial y} = x^2 - 1 = N(x, y)$

Thus, $x^2y - y = c \Leftrightarrow f(x,y) = c$ Where c is any Constant is an implicit Solution to $2xy+(x^2-1)y'=0$

Check #1 Suppose xy-y=c Differentiate both sides with respect to x to get: 2xy + xy - y =original dy dy So, $+(x^{2}-1)y'=0^{2}$ $2 \times y$

Check #2/ We can actually solve for y in our solution xy-y=c. We get $y - x^2 - 1$ Let's check if it solves the equation. We have $y = c \left(\chi^2 - 1 \right)^{-1}$ $y' = -c(x^{2}-1)^{-2}.(2x)$ -ZCX $(\chi^2 - 1)^2$ Plug this into the ODE to get ZXY+(X-1)Y'

 $= 2 \chi \left(\frac{c}{\chi^2 - 1} \right) + \left(\chi^2 - 1 \right) \left(\frac{-2 c \chi}{(\chi^2 - 1)^2} \right)$ $\frac{Z \times C}{\chi^2 - 1} + \frac{-Z C \times X}{\chi^2 - 1}$ solves $y = \frac{c}{x^2 - 1}$ Thus, $2xy + (x^{2} - 1)y' =$ 0

When does such an f exist? Theorem Let M(x,y) and N(x,y) be continuous and have Continuous first partial derivatives in some rectangle R in some rectning it defined by a < x < b and c < x < d. Then, M(x,y)+N(x,y)y=0 < Will be exact < a b Then, M(x,y) + N(x,y)y = 0will be exact if and only if Here a,b,c,d Can be ± po $\frac{\partial M}{\partial y} = \frac{\partial X}{\partial X}$

Proof: See the end of these notes if interested 12

Ex: Consider the previous $2xy + (x^{2}-1)y' = 0$ M(x,y) N(x,y) equation

naue M(x,y) = 2xy, there are Continuous everywhereWe have

 $\frac{\partial N}{\partial x} = 2 \times \begin{cases} \text{these} \\ \text{are} \\ \text{continuous} \\ \text{everywhere} \end{cases}$ And $\frac{\partial M}{\partial x} = Zy$ $\frac{\partial M}{\partial y} = 2X$ Ris R the entire xy-plane

And, $\frac{\partial M}{\partial y} = 2 \times \epsilon \qquad \text{Equal} \, \frac{1}{2}$ $\frac{\partial N}{\partial x} = 2 \times \epsilon$ Thus, $Z \times y + (\chi^2 - 1)y = 0$ is exact, that is there exists f(x,y) where $\frac{\partial f}{\partial x} = M(x,y)$ and $\frac{\partial f}{\partial y} = N(x,y)$

Exi Above we saw that $2xy + (x^2 - 1)y' = 0$ M(x,y) N(x,y) is exact. We saw that a solution is given by xy-y Where $f(x,y) = x^2y - y$. How did I find such an f? Pretend like we don't know f. We need f where $\frac{\partial f}{\partial x} = M(x,y)$ $\frac{\partial f}{\partial x} = Z X Y$ $\left|\frac{\partial \lambda}{\partial t} = N(x,\lambda)\right|$ $\frac{\partial f}{\partial y} = \chi - 1$

Integrate (D) with respect to x to get

$$f(x,y) = x^{2}y + C(y) \quad (*)$$
Integrate (2) with respect to y to get

$$f(x,y) = x^{2}y - y + D(x) \quad (**)$$
Now set (*) and (**) equal since they
both equal $f(x,y)$ to get:

$$x^{2}y + C(y) = x^{2}y - y + D(x)$$
Now cancel out the common terms to get

$$C(y) = -y + D(x)$$
To make these equal set $C(y) = -y$ and $D(x) = 0$.
Plug either into (*) or (**) to find f.
Plugging $C(y) = x^{2}y - y$

Answer:
$$x^2y - y = c$$
 solves $2xy + (x^2 - 1)y' = 0$
where c is any constant. Like we had above.

Exi
Consider the initial value problem

$$(e^{x}+y)+(z+x+ye^{y})y'=0$$

 $y(0)=1$

Let's solve

$$(e^{x}+y)+(2+x+ye^{y})y'=0$$

 $M(x,y)$
 $M(x,y)$

But first is it exact so we can use our method?

We have x M(x,y) = e + ythese N(x,y) = 2 + x + yeare snortual $\frac{9 \times 6}{9 \times 10^{-10}} = 1$ $\frac{\partial M}{\partial x} = e^{x}$ everywhere $\frac{\partial N}{\partial y} = 1 \cdot e + y \cdot e^{y}$ 34 = Check: $\left(\frac{\partial N}{\partial X} = 1 = \frac{\partial M}{\partial y}\right)$ So, the ODE equation is exact. Thus, the equation $(e^{x}+y)+(2+x+ye^{y})y=0$ is exact. So there must exist

$$f(x,y) + hat satisfies:$$

$$\frac{\partial f}{\partial x} = e^{x} + y$$

$$\frac{\partial f}{\partial x} = Z + x + ye^{y}$$

$$(I) = \frac{\partial f}{\partial x} = M(x,y)$$

$$\frac{\partial f}{\partial y} = N(x,y)$$

Integrate (1) with respect to x to yet

$$f(x,y) = e^{x} + yx + C(y) \quad (x)$$
Constant with respect to x
Now integrate (2) with respect to y to yet

$$f(x,y) = 2y + xy + ye^{y} - e^{y} + D(x) \quad (xx)$$

$$f(x,y) = 2y + xy + ye^{y} - e^{y} + D(x) \quad (xx)$$
Constant with
respect to y

$$\int ye^{y} dy = ye^{y} - \int e^{y} dy = ye^{y} - e^{y}$$

$$\int ye^{y} dy = ye^{y} - \int e^{y} dy = ye^{y} - e^{y}$$

Set
$$(*)$$
 equal to $(**)$ since they both
equal $f(x,y)$ to get:
 $e^{x} + yx + c(y) = 2y + xy + ye^{2} - e^{2} + D(x)$
(ancel out common terms to get
 $e^{x} + c(y) = 2y + ye^{2} - e^{2} + D(x)$
 $f(x,y) = 2y + ye^{2} - e^{2} + D(x)$
Set $((y) = 2y + ye^{2} - e^{2} + D(x))$
 $f(x,y) = e^{x} + yx + 2y + ye^{2} - e^{2}$
 $f(x,y) = e^{x} + yx + 2y + ye^{2} - e^{2}$

 $(e^{x}+y)+(2+x+ye^{y})y'=0$ A solution to e^{x} +yx+zy+ye-e=c where c is a constant. Solution where y(0) = 1. f(x,y) = cPlug X=0, y=1 into our solution. We get: e + (1)(0) + 2(1) + (1)e - e = cSo c = 3. And an answer to the initial-value problem is exyx+zy+ye'-e'=3 (this is an implicit solution since you can't solve for y) D

Below I put a proof of the main theorem in this topic. It's mainly for me But if you're interested, see below.

Let's prove this theorem.

Theorem: Let
$$M(x,y)$$
 and $N(x,y)$
be continuous and have continuous
first partial derivatives in some
rectangle R defined by $d f$
 $a < x < b$ and $c < y < d$
Then
 $M(x,y) + N(x,y) \cdot y' = 0$
is exact if and only if
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

proof: For simplicity suppose R is the entire
Xy-plane and that M and N are continuous
for all (x,y) and so are their partial derivatives.
(
$$\rightarrow$$
) First suppose that M+Ny'=0 is exact.
Then there exists f where $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$.
Then, $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (\frac{\partial}{\partial x} f) = \frac{\partial}{\partial x} (\frac{\partial}{\partial y} f) = \frac{\partial N}{\partial x}$.
Force III - Clairants the applied to My and Nx

(4) Suppose now that
$$\frac{\partial H}{\partial y} = \frac{\partial N}{\partial x}$$
. We will
show that this implies that $M + Ny' = 0$
is exact.
Since M is continuous we can define
 $f(x_{i}y) = \int M(x_{i}y) dx + g(y)$ (*)
where g is any function of y.
Here we get that $\frac{\partial f}{\partial x} = M$.
We want to now find $g(y)$ where
 $N = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \int M(x_{i}y) dx + g'(y)$
We will need
 $g'(y) = N - \frac{\partial}{\partial y} \int M(x_{i}y) dx$
To do this we can show that the RHS
is just a function of y and hence we
can integrate it with respect to y to get g(y)
We have that
 $\frac{\partial}{\partial x} (N - \frac{\partial}{\partial y} \int M(x_{i}y) dx$

.

$$=\frac{\partial N}{\partial x} - \frac{\partial}{\partial y} \frac{\partial}{\partial x} \int M(x,y) dx$$

$$=\frac{\partial N}{\partial x} - \frac{\partial}{\partial y} M$$

since

$$=\frac{\partial N}{\partial x} - \frac{\partial H}{\partial y}$$

$$=\frac{\partial N}{\partial x} - \frac{\partial H}{\partial y}$$

Thus, such a g(y) exists.
And

$$f(x,y) = \int M(x,y) dx + \int (N(x,y) - \int M(x,y) dx) dy$$

will satisfy $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$.